Matlab: résumé du cours

Document autorisé à l'examen s'il n'est pas annoté.

Variables:

Déclaration à la volée, type adaptatif

Information sur les variables :

```
isxxx (ex isreal, iscomplex...)
```

[lc] = size(M); L = length(M) = max(size(M))

Plages:

Priorité au pas	Priorité au nombre de points
Xmin: h: Xmax	linspace(Xmin, Xmax, n)
Option : si omis h=1	Option : si omis n = 100

Matrices:

Matrice : Concaténation	Matrice : Sélection
[]: met bout à bout les éléments, ';' passe à la ligne	M(plage_ligne , plage_colonne) : débute à 1

Sélection : plage complète ':' / choix du dernier 'end'

Matrices spéciales : m = zeros(n_lignes, n_colonnes) / idem ones et eye (matrice identité)

Opérateurs:

Combinent les variables : +, -, *, / etc. Ils s'adaptent au type de variables

Possibilité de forcer un comportement 'terme à terme' en préfixant avec un '.' l'opérateur.

Opérateurs logiques:

Comme en C mais non-doublés. Opérateurs termes à termes. Retournent vrai (=1) / faux (=0).

Ex : [1 2 3] <= 2 retourne 1 1 0

Contrôle de flux :

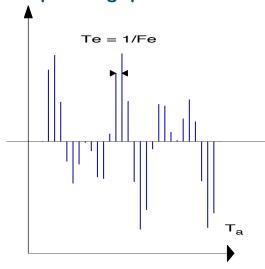
<pre>if (condition)</pre>	<pre>switch (expression énumérable)</pre>
while (condition) séquence d'instructions end	for index = debut: pas : fin séquence d'instructions end

Saisie/affichage:

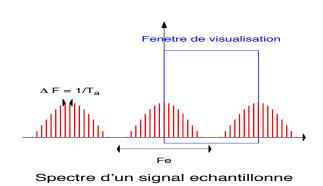
Saisie	Affichage
<pre>Variable = input('message','s') % 's' pour des char</pre>	* ne pas mettre de ';' en fin de ligne * OU utiliser disp : disp(['a = ', num2str(a)])

Algorithmes de Base :

Somme :	Produit
<pre>S = 0 % S est l'accumulateur Pour tous les Xk S = S + Xk fin</pre>	<pre>P = 1 % P est l'accumulateur Pour tous les Xk P = P * Xk fin</pre>


En général ces grandeurs sont calculées avec des boucles for.

Commandes Graphiques: tapez help + commande pour + d'info


Tracés :	Décors :
<pre>plot ; semilogx ; semilogy ; loglog ; stem</pre>	title ; legend ; xlabel ; ylabel ; grid on/off

Création de figures / graphes multiples	Grille, supperposition, axes
Automatique a l'appel d'une commande de tracé ou figure(numéro) ou subplot(nligne, ncol, Num_fig)	<pre>grid on/off; hold on/off; axis tight; axis([xmin, xmax, ymin, ymax])</pre>

Graphe magique:

Signal echantillonne

Conservation de l'énergie	Equivalence de la dérivation
$\frac{1}{N} \sum_{t=0}^{N-1} x[t]^2 = \sum_{f=0}^{N-1} X[f] ^2$	$p \to \frac{1 - z^{-1}}{T_e}$

Vous pouvez (devez ?) utiliser l'aide en ligne et poser des questions au besoin même durant l'épreuve